

Fuji Gas Analyzers

Conservation of sound environment is also our important task.

Our company commercialized an infrared type gas analyzer in 1954 and recently has developed unique analyzers one after another as represented by a CO/O₂ analyzer for monitoring of dioxins emission reguration and a simultaneous multi-component gas analyzer in order to enrich the product lineup.

Our company will continue offering analytical instruments helpful for protection of the global environment through the integration of new technologies and long experience.

INFRARED GAS ANALYZER best suited for measuring exhaust gas in stack

Simultaneous Measurement of 5 components; NOX, SO2, CO, CO2 and O2

Type: ZSU

CO, O₂ Gas Analyzer for stack gas

Type: ZSQ

Simultaneous Measurement of 7 components; NOX, SO2, HC ℓ , CO, CO2, O2, Soot and Dusts

Type: ZSU-7

Type: ZSVF

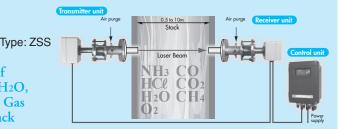
Compact Type NOx, SO2, CO,

CO₂ and O₂ GAS ANALYZER

CO GAS ANALYZER for Air pollution monitoring

CO GAS ANALYZER for Automobile tunnel

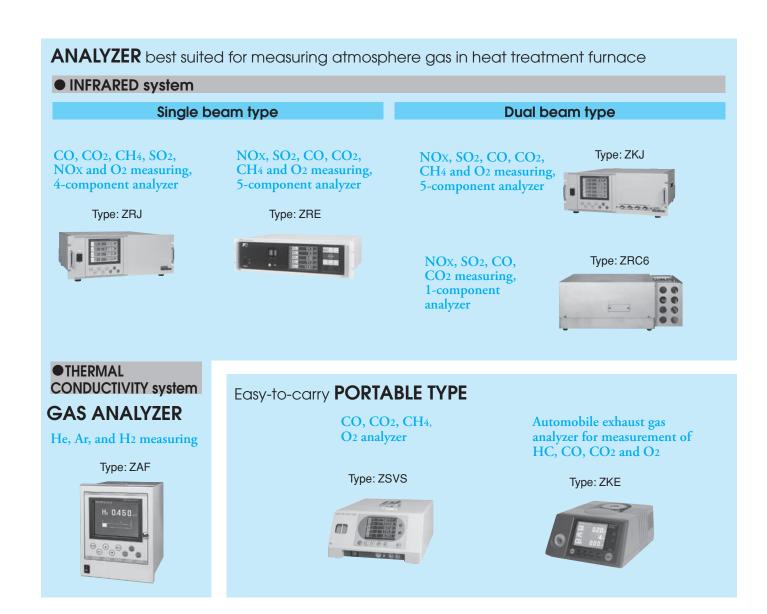
Type: ZSA


CO2 CONTROLLER
best suited for building
ventilation and green house

Type: ZFP

CROSS STACK
LASER GAS
ANALYZER

Fast measurement of NH₃ Gas or HCℓ, H₂O, CO, CO₂, CH₄, O₂ Gas concentration in Stack



OXYGEN ANALYZER SERIES best suited for combustion control and energy saving

Fast response type PARAMAGNETIC ANALYZER

Satisfactory products for customers will be delivered under strict quality control.

"Status of manufacturer specified in the Measurement Law" already acquired: Specification No. 391901

ISO 14001 certification already obtained: Registration certificate No. EC97J1059

ISO 9001 certification already obtained: Registration certificate No. JMI-0122

INFRARED GAS ANALYZER

Is the air really safe?

Yes. Because a gas analyzer keeps an eye on pollutant gases.

Simultaneous Measurement of NOx, SO₂, CO, CO₂ and O₂ for stack gas

Type: ZSU

Japanese pattern approval SAS992-1 (SO2 meter) SAC992-1 (CO meter) SAN991-1 (NOx meter) SE981 (O2 meter) SF011 (O2 meter)

Simultaneous Measurement of CO, O₂ Gas Analyzer for stack gas

Type: ZSQ

Japanese pattern approval SAC984 (CO meter) SE981 (O₂ meter)

FEATURES

- Measurement by the infrared ray method (dual beam optics) excellent in long-term stability.
- Hardly affected by unintended gases because interference components' influence is corrected with twin detectors.
- ■Standard-equipped with automatic zero/span calibrating function
- Space saving design allowing maintenance from the front of each analyzer.

SPECIFICATIONS

- Measuring object: Exhaust gas of Incinerator and boiler, etc.
- Measurable components: NOx, SO2, CO, CO2, O2
- Measuring system: Dual beam type infrared method
 (O2: Zirconia method or Paramagnetic method)
- Measurement range: NOx: 0 to 50 5000ppm

SO2: 0 to 50 5000ppm CO: 0 to 50 5000ppm CO2: 0 to 10 / 0 to 20% O2: 0 to 10 / 0 to 25vol%

- Repeatability: ±0.5%FS
- Linearity: ±1%FS
- Zero/span drift: ±2%FS/week (O2: ±2%/month)
- Response time: NOx, CO, CO2, O2: 2 minutes, SO2: 4 minutes (90% response, from the device inlet)
- Output signal: 4 to 20mA DC
- Contact output: Auto calibration status, maintenance status, concentration alarm, CO peak count alarm, range identification of each component, etc.
- Contact input: Auto calibration start, range changeover, pump ON-OFF, etc.
- Function: Auto calibration, O2 correction, average value calculation, concentration alarm, CO peak count alarm, etc.
- Display: LCD with back light
- Recorder: 6-point recorder mounted (option)
- Power supply : 100V, 110V, 115V, 200V or 230V AC
- Outer dimensions: 800(W) x 1710(H) x 615(D) mm

FEATURES

- Measurement by the infrared ray method (single beam optics) excellent in long-term stability.
- ■Provided with CO peak count alarm and self-diagnostic function
- Standard-equipped with automatic zero/span calibrating function
- Space saving design allowing maintenance from the front of each analyzer.

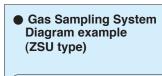
SPECIFICATIONS

- Measuring object: Exhaust gas of incinerator, etc.
- Measurable components: CO, O2
- Measuring system: Single beam type infrared method (O2: Zirconia method)
- Measurement range: CO:0 to 200·······2000ppm O2: 0 to 25vol%

Repeatability: ±0.5%FS

Linearity: ±1%FS

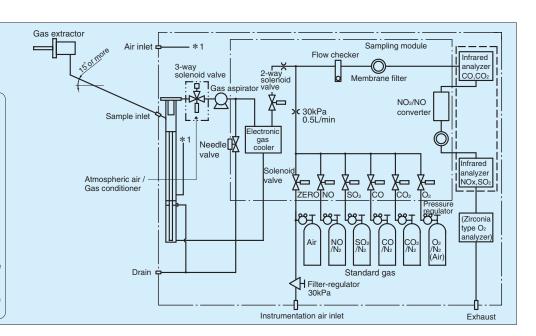
Zero/span drift: ±2%FS/week (O2: ±2%/month)


Response time: 90 seconds

(90% response, from the device inlet)

- Output signal: 4 to 20mA DC
- Contact output: CO peak count alarm, auto calibration status, error status, etc.
- Function: Auto calibration, O2 correction, average value calculation, CO peak count alarm, etc.
- Display: LCD with back light
- Recorder: 6-point recorder mounted (option)
- Power supply: 100V AC, 50/60Hz

(110 to 240V AC: transformer built in)


Outer dimensions: 600(W) x 1580(H) x 675(D) mm

- Temperature of gas used: Max 800 C (SUS extraction tube) Max 1500 C (SIC extraction tube)
- System: Electrical heating
- Material of extraction tube: SUS 316, or SIC + SUS 316
- Length of extraction tube: 600 to 2000mm
- Mounting method: JIS 5K 65A flange
- Filter: SUS 316 wire mesh
- Sampling gas outlet: RC1/4
- Power supply voltage: 100V AC, 100 VA (for built-in heater)

Simultaneous Measurement of NOx,SO₂, $HC\ell$,CO, CO₂,O₂,Soot and Dusts for stack gas

Type: ZSU-7

Japanese pattern approval SAS992-1 (SO₂ meter) SAC992-1 (CO meter) SAN991-1 (NOx meter) SE981 (O₂ meter) SF011 (O₂ meter)

FEATURES

Measurement can be taken by the infrared ray method (single beam type) having excellent stability and maintainability.

- ■All functions are included in the small locker of 600 (W) \times 515 (D) \times 1710 (H) mm.
- ■Zero and span auto calibration function is equipped as standard.
- ■Space-saving configuration that is accessible for maintenance on the front panel of the analyzer.

SPECIFICATIONS

- Measuring object: Exhaust gas of Incinerator and boiler, etc.
- Measurable components: NOx, SO₂, HCl, CO, CO₂, O₂, Soot and Dusts
- Measuring system: Dual beam type infrared method

(O2: Zirconia method, HCℓ: Laser method)

• Measurement range: NOx: 0 to 50 ······ 5000ppm

SO₂: 0 to 50 ······ 5000ppm $HC\ell$: 0 to 15ppm·m······ 5000ppm·m

CO: 0 to 505000ppm

CO₂: 0 to 10 / 0 to 20%

O2: 0 to 10 / 0 to 25 vol%

Soot and Dusts: 0.01 to 1000mg/m³

Repeatability: ±0.5 FS (infrared method),

±2% FS (Laser method)

Zero/span drift: ±2%FS/week

(O2: ±2% FS/month HCl : ±2% FS)

• Response time: NOx, CO, CO2, O2: 2 minutes,

SO₂: 4 minutes

 $HC\ell$:1 to 5 sec. (90% response, from the device inlet)

- Output signal: 4 to 20mA DC
- Contact output: 8 point (Auto calibration status, maintenance status, concentration alarm etc.)
- Contact input: Auto calibration start, range changeover etc.
- Recorder: Paperless recorder mounted (option)
- Power supply: 100V, 110V, 115V, 200V or 230V AC
- Outer dimensions: 1215(W) x 1780(H) x 700(D) mm

Simultaneous Measurement of NOx, SO₂, CO, CO₂ and O₂ for stack gas

Type: ZSVF

FEATURES

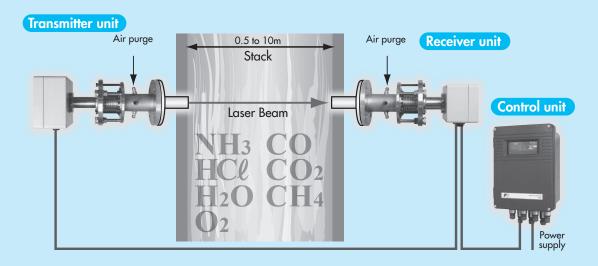
- ■A maximum 5 components out of NOx, SO₂, CO, CO₂, CH₄ and O₂ can be measured simultaneously.
- ■The large LCD screen with clear display assures simple operation.
- Single-beam infrared gas analyzer having excellent stability is adopted.
- ■The separate structure allows the analyzer unite and the pretreatment unit to be placed separately.
- ■Measurement can be taken continuously for up to 5 days.

SPECIFICATIONS

- Measuring object: Combustion exhaust gas measurement, etc.
- Measurable components: NOx, SO2, CO, CO2, CH4, O2
- Measuring system: Singlel beam type infrared method (O2: Paramagnetic method or galvanic method)

Measurement range: NOx: 0 to 500 5000ppm

SO2: 0 to 500 ······· 1%
CO: 0 to 200 ······ 100%
CO2: 0 to 200 ····· 100%
CH4: 0 to 2000ppm··· 100%


O2: 0 to 5 / 25%

• Repeatability: ±0.5%FS

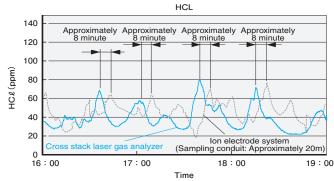
- Linearity: ±2%FS
- Zero/span drift: ±1%FS/day
- Response time: 50 second for 90% response from the device inlet but 3 minutes for SO₂
- Output signal: 4 to 20mA DC or 0 to 1V DC
- Communication function: RS-232C (MODBUS)
- Functions: Auto calibration, O2 correction, average value calculation
- Indication: LCD with back light
- Power supply: 100 to 115V AC or 200 to 240V AC, 50/60Hz
- Outer dimensions: 365(W) x 574(H) x 514(D) mm

CROSS STACK Laser Gas Analyzer

Fast measurement of NH3 Gas or HCl, O2, H2O, CO, CO2, CH4 Gas concentration in Stack Type: ZSS

FEATURES

- ■Excellent Long-term Stability, and Maintenance-free!
- ■Zero drift: ±2.0%FS
- Highly absorptive and corrosive gasses can be measured in low concentration.
- ■Usable in high temperature and dusty environment.
- Fast response (1 to 5 sec.) is available, and integration with the control system is feasible.



■Measurable components measurable range

5000ppm 5000ppm
5000ppm
- -
1000ppm(HCℓ) Note 1)
1000ppm(NH ₃) Note 1)
50vol%

Note 1) The H_2O range is fixed to 50 vol%.

■Case example of field measureing data

SPECIFICATIONS

Measurable gas	HCl, NH3, HCl+H2O, NH3+H2O, O2	Contact output	5 items (Outside the range of upper/lower limits, insufficient
	CO, CO ₂ , CH ₄ , CO+CO ₂		quantity of light received, device fault, on hold)
Measurement principle	Non-dispersive infrared absorbance system(NDIR)	Power supply voltage	100 to 240VAC approx. 70VA
Installation system	Cross stack system	Ambient	Receiver/transmitter units -20 to 55°C,
Laser class	CLASS 1M	temperature	Controller unit -5 to 45°C, 90%R.H. or less
Measuring light path length	0.5 to 10m (stack/smokestack width)	Measuring gas	1200°C max.
Repeatability	±2.0% FS	temperature	
Zero/span drift	±2.0% FS (NH₃±3.0% FS when range is 20ppm or less)	Measuring gas pressure	±10kPa
Response time	1 to 5 seconds(90% response)	Outside dimensions	Receiver unit (180×400×200mm)
Analog output	4 to 20mADC, 0 to 1VDC, 0 to 5VDC or	(D×W×H)mm	Transmitter unit (240×400×200mm)
	0 to 10VDC (depending on specification)		Controller unit (135×240×320mm)
Analog input	4 to 20mADC (2 or 6 points)	Mass	Receiver/transmitter units (approx. 10kg each),
Communication function	USB or RS-485 (MODBUS)		control unit (approx. 8kg)
Contact input	3 items (Average value reset, remote hold, remote range switching,	Mounting method	Control unit (mounting on wall or piping),
(option)	instantaneous value/average value switching)		receiver/transmitter units (mounting on flange)

Infrared Type Gas Analyzer (Component)

Measuring method		Single beam system		Dual beam system			
Туре		ZRE	ZRJ	ZKJ	ZRC6		
Appearance							
Measurable	NO	0 to 200ppm	0 to 500ppm	0 to 50ppm	0 to 100ppm		
gas compo- nents &	SO ₂	0 to 200ppm	0 to 500ppm	0 to 50ppm	0 to 100ppm		
minimum	СО	0 to 200ppm	0 to 200ppm	0 to 50ppm	0 to 100ppm		
range	Low concentrationCO	_	_	_	_		
	CO ₂	0 to 100ppm	0 to 500ppm	0 to 20ppm	0 to 50ppm		
	CH4	0 to 500ppm	0 to 1000ppm	0 to 200ppm	_		
	O ₂ meter built in	0 to 5%	0 to 5%	0 to 5%	_		
Number of measurable gas components		1 to 5	1 to 4	1 to 5	1		
Repeatability		0.5% of full scale					
Zero drift		Within 2% of full scale/week					
Span drift		Within 2% of full scale/week					
Response sp (90% respons		Within 60 seconds	Within 15 seconds / 2 components Within 30 seconds / 4 components		Within 20 seconds		
Analog	4 to 20mA DC	•	•	•	•		
output	0 to 1V DC	•	•	•	•		
Communicati	on interface	●RS485 (Option)	●RS232C (Option)	●RS232C (Option)	_		
Contact outpo	ut	•	•	•	_		
Contact input		●Option	•	•	•		
Indication		LCD with back light	LCD with back light	LCD with back light	_		
	Automatic calibration	●Option	•	•	_		
	Upper/lower limit alarm	●Option	•	•	_		
Function	Average calculation	●Option	●Option	●Option	_		
	O ₂ correction	●Option	●Option	●Option	_		
	CO peak count	_	●Option	●Option	-		
Power supply		100 to 240V AC	100 to 240V AC	100 to 240V AC	100 to 240V AC		
Outer dimensions (W x H x D) mm 483×133×418 483×177×493 483×177×690 433×17			433×176×229				

Compact type infrared gas analyzer

Type: ZSVS

FEATURES

- ■The gas concentrations of 4 components among CO₂, CO, CH₄ and O₂ measured simultaneously and continuously with a single gas analyzer.
- ■Transportable with built-in pump, filter and flow meter.
- Provided with computation functions such as CP calculation, O₂ correction, moving average, etc.
- ■Smooth operation in an interactive way through a large-size LCD.
- ■Excellent in long-term stability and easy maintenance using single beam system.

SPECIFICATIONS

- Measurable components: CO₂, CO, CH₄ and O₂
- Measuring system: Single beam type infrared method

(O2: galvanic cell method)

• Measurement range: 0 to 200 -----100%CO2

0 to 200 -----100%CO 0 to 100 -----100%CH4

0 to 5/25%O2

- Numbers of range: Max. 3 ranges
- Measurable components:Max. 4 components
- Repeatability: Drift: Within ±1.0% of full scale/day
- Response time: Less than 50 seconds
 (90% response from the gas inlet)
- Output signal: 4 to 20mA DC or 0 to 1V DC
- Communication function: RS232C (MODBUS)
- Standard function: CP calculation, O2 correction, O2-corrected moving average value, automatic OFF, etc.
- Indication: LCD with back light
- Outer dimensions: 365(W) x 211(H) x 527(D) mm
- Power-supply voltage: 100 to 115V AC or 200 to 240V AC

ZIRCONIA OXYGEN ANALYZER

This type of oxygen analyzer is capable of measuring oxygen gas even without a gas aspirator, gas cooler, etc. Optimum for combustion control of boiler, refuse incinerator, sludge incinerator, heating furnace, etc.

IP66 Type

IP67 Type

Frame-proof Type

Detecting unit

Self-stand type accommodating necessary devices.

Type: ZSB

Compact and High capacity

Detector type: ZFK8

type: ZKM1

type: ZKM2

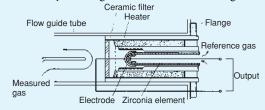
FEATURES

- Automatic calibration and manual/auto blow-down functions are provided. A solenoid valve and other necessary devices are incorporated.
- Measuring range is freely settable within 2 to 50%.
- ■Incomplete combustion level indication is selected when oxygen becomes inadequate.

SPECIFICATIONS

- Measuring object: Oxygen in combustion exhaust gas
- Measuring range: 0 to 2----50vol% O2 (freely settable)
- Repeatability: ±0.5%FS
- Linearity: ±2%FS
- Response time: Within 10 seconds (From calibration gas inlet)
- Oxygen concentration output signal: 4 to 20mA DC or 0 to 1V DC
- Contact output: 4 points (1a relay contact) Upper/lower limit alarm, maintenance status, blow down status, contact output during calibration
- Contact input: Auto calibration start, inhibit calibration
- Indication: Oxygen concentration display (3-digit LED), mode display (3pcs LED), operation/setting display(16digit, 2-line LCD)
- Combustion efficiency display: Option
- Communication interface: RS485 (option)
- Calibration method: Automatic, manual by key operation, input from external contact
- Power supply: 100, 115 or 230V AC 50/60Hz
- Construction: Pipe stand type or wall mounting type
- Cable length from converter part to detector: 20m, max.

FEATURES


- Modular detector design allows easy field replacement of zirconia element.
- ■High-speed response of 4 to 7 seconds.
- ■Case structure available in two types: IP66 and IP67.
- ■May be programmed without opening the case cover (ZKM1).

SPECIFICATIONS

- Measuring object: Oxygen in combustion exhaust gas
- Measuring range: 0 to 2----50vol% O2 (freely settable)
- Repeatability: ±0.5%FS
- Linearity: ±2%FS
- Response time: 4 to 7seconds (from inlet for calibration gas)
- Oxygen concentration output signal: 4 to 20mA DC or 0 to 1V DC
- Contact output: 6 points (1a relay contact)
 Alarm, instrument error, under maintenance, under blow down, zero gas span for out put calibration.
- Input contact: 3 points (no voltage contact)
 Blow down, starting calibration, heater OFF,
 range change, external hold
- Concentration value indication: Digital indication in 4 digits
- Combustion efficiency display: Option
- Communication function RS232C or RS485 (MODBUS)
- Calibration method: Automatic, manual by key operation, input from external contact
- Power supply: 100 to 120V AC or 200 to 240V AC 50/60Hz
- Mounting method : Mounting on panel surface, or pipe stand
- Cable length from converter part to detector: 100m, max.

A flow guide tube skillfully utilizing the flow of the measured gas assures fast response.

Various combinations of detector and flow guide tube have been prepared for use under different site conditions.

Note) Blow-down refers to a function for blowing away the dust accumulating in the flow guide tube of detector unit by compressed air.

Application	Temperature	Gas flow	Dust	Remarks	Adaptable detector/flow guide tube	Mounting method
Boiler, etc.	600°C or less	5 to 20m/s	Below 0.2g/Nm ³	Fuel: Gas, oil	General-purpose	JIS 5K 65A
(General- purpose)			Below 10g/Nm ³	Fuel: Coal	With blow-down nozzle	JIS 5K 80A
Garbage incinerator,	600°C or less	5 to 20m/s	Below 1g/Nm ³	Small amount of	For anti-corrosion	JIS 5K 65A
Sludge incinerator			Below 10g/Nm ³	moisture in gas	For anti-corrosion with blow-down nozzle	JIS 5K 80A
(For anti-corrosion)			Below 25g/Nm ³		For anti-corrosion high dust	JIS 5K 80A
			Below 25g/Nm ³	For anti-corrosion high dust with cover		JIS 5K 80A
Heating furnace	800°C or less	1m/s or less	Below 1g/Nm ³	Small amount of	With ejector	JIS 10K 65A
(General- purpose)	1500°C or less	1m/s or less	Below 1g/Nm ³	moisture in gas	With ejector	JIS 10K 65A

Flame-proof type

Detector type: ZFKE

Conveter type:ZKME

Zirconia O2 analyzer for ZRJ, ZKJ, ZRE(Built-in type)

Type: ZFK7

FEATURES

- Modular detector design allows easy field replacement of zirconia element.
- ■High-speed response of 4 to 7 seconds.
- ■May be programmed without opening the case cover.
- ■Flame-proof type available for explosive atmospheres TIIS Exd IIB T6, NEPSI/Eexd IIC T6 ExII2G

SPECIFICATIONS

- Measuring object: Oxygen in combustion exhaust gas
- Measuring range: 0 to 2----50vol% O2 (freely settable)
- Repeatability: ±0.5%FS
- Linearity: ±2%FS
- Response time: 4 to 7seconds (from inlet for calibration gas)
- Oxygen concentration output signal: 4 to 20mA DC or 0 to 1V DC
- Contact output: 6 points (1a relay contact)
 Alarm, instrument error, under maintenance, under blow down, zero gas span for out put calibration.
- Input contact: 3 points (no voltage contact)
 Blow down, starting calibration, heater OFF,
 range change, external hold
- Concentration value indication: Digital indication in 4 digits
- Combustion efficiency display: Option
- Communication function RS232C or RS485 (MODBUS)
- Calibration method: Automatic, manual by key operation, input from external contact
- Power supply: 100 to 120V AC or 200 to 240V AC 50/60Hz
- Mounting method : Mounting on panel surface
- Cable length from converter part to detector: 100m, max.

Easily replaceable zirconia element

The combination table of NDIR gas analyzer and Zirconia O2 analyzer

NDIR gas analyzer	Zirconia O2 analyzer
ZRJ	ZFK7
ZKJ	ZFK7
ZRE	ZFK7

SPECIFICATIONS

- Measuring system: Zirconia method
- Measurement range: 0 to 25%
- Repeatability: ±0.5%FS
- Zero drift: ±1%FS/week
- Span drift: ±2%FS/week
- Response time: Within 20 seconds (From calibration gas inlet)
- Power supply: 100 to 115V AC or 200 to 240V AC, 50/60Hz
- Outer dimensions: 170(W) x 140(H) x 190(D) mm

PARAMAGNETIC OXYGEN ANALYZER

Paramagnetic oxygen analyzers maintaining quick response unaffected by combustible gases. Most suited for combustion control of heat treatment furnaces and combustion furnaces, and for chemical

experiment.

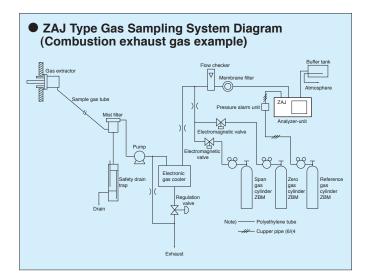
Fast response type

Reference gas needless type

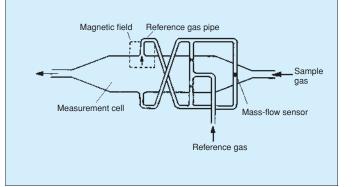
2-second fast response ZAJ-type

Type: ZAJ

FEATURES


- ■Response as high as 2 seconds.
- Hardly affected by other gases (such as H2 and CO2).
- A suppression range such as 21 to 100% O2 is settable.
- ■Gas-contacting parts are made of corrosion-resisting material
- ■Automatic calibration function and communication function can be incorporated (at option).

SPECIFICATIONS


- Measuring principle: Paramagnetic method (Pressure detect
- Measurement range: (1) When reference gas is N2 0 to 2 -----100%O2 (freely settable)
 - (2) When reference gas is air 21 to 23 ---- 100%O2 or

21to 19 -----0%O2 (freely settable)

- (3) When reference gas is 100%O2 100 to 98 -----0%O2 (freely settable)
- Numbers of range: 2 ranges
- Repeatability: ±0.5%FS (in 10%O2 or higher range)
- Linearity: ±2%FS
- Response time: Within 2 seconds (From sample gas inlet)
- Oxygen concentration output signal: 4 to 20mA DC or 0 to 1V DC
- Moving average time: 0 to 99.9 seconds
- Contact output: 2 points (1a relay contact) Calibration status, contact output of analyzer error
- Contact input (Option): Remote range changeover, output hold
- Indication: LCD display, Oxygen concentration display (4-digit), range display(4-digit), message display (24-digit, 2-line)
- Alarm output: Upper/lower limit alarm (Option)
- Communication interface: RS232 (Option)
- Automatic calibration method: Zero/span automatic calibration function (option)
- Power supply: 100 to 240V AC, 50/60 Hz
- Mounting method: Mounting on 19-inch rack, flush mounting on panel or desk top mounting

ZAJ Type Measuring Principle Diagram When the measured gas is placed in a magnetic field, oxygen molecules will be attracted. This gives rise to a pressure, which is detected by a mass flow sensor.

Scarcely affected by interference gasses

ZAJ type case (Deviation of zero point caused by flowing interference gas component at 100%)

Interference gas	Deviation in O2%
NO	+43
CO	+0.01
CO ₂	-0.27
CH ₄	-0.20
He	+0.30
H ₂	+0.24
HCL	-0.30
NНз	-0.26
SO ₂	-0.22
N ₂ O	-0.02
H ₂ O	-0.02

Reference gas needless ZKG-type

Type: ZKG

FEATURES

- ■Response as high as 15 seconds.
- ■Hardly affected by other gases (such as H2 and CO2).
- ■The front area measuring 220 x 443 mm is mounted flush with a panel.

SPECIFICATIONS

Measuring principle: Paramagnetic method (Dumbbell type)

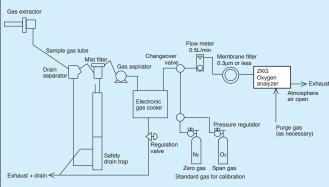
• Measurement range: 0 to 10,25,50,100%O2 (as specified)

Numbers of range: 1 or 2 ranges (as specified)

 Repeatability: ±0.5%FS Linearity: ±1.0%FS • Zero drift: ±2.0%FS/week

Span drift: ±2.0%FS/week

• Response time: Within 15 seconds (From calibration gas inlet)

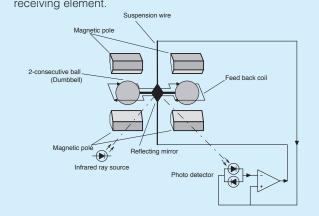

Oxygen concentration output signal: 4 to 20mA DC or 0 to 1V DC

• Indication: 4-digit LED (Oxygen concentration indication) in red

• Power supply: 100 to 240V AC, 50/60 Hz Mounting method: Mounted flush on panel

• Outer dimensions: 190(W) x 240(H) x 234(D) mm

ZKG type Gas Sampling System Diagram (Boiler exhaust gas example) 一门



ZKG type Measuring Principle Diagram

There are two glass spheres in the cell.

When oxygen molecules flow there, they will be attracted toward the stronger magnetic field to cause a positional change of the spheres.

The displacement of the spheres is detected with a light receiving element.

Hardly affected by interference gasses

ZKG type case

Interference gas	Interference gas concentration	Deviation in O ₂ %
NO	2000ppm	+0.15
CO	100%	+0.1
CO ₂	100%	-0.35
CH ₄	100%	-0.25

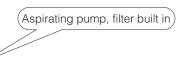
CO₂ CONTROLLER

Protected Horticulture

For growing sweet melon and strawberry in greenhouse.

Storage of Fresh Produce

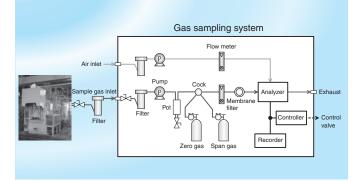
To create optimum environment for storage of fruit and vegetables.


Building Air-conditioning

For control of room ventilation in a building and save energy due to cooling and heating.

INFRARED CO₂ CONTROLLER with pomp built-in

Type: ZFP


FEATURES

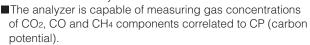
- ■With built-in suction pump and filter.
- ■Two 1c (SPDT) relay contacts incorporated.
- ■Analog output signal incorporated.

SPECIFICATIONS

- Measuring object: CO2 concentration in air
- Measuring system: Single beam type infrared method
- Measurement range: 0 to 0.2 ---- 20%
- Repeatability: ±1.0% of full scale
- Zero drift: ±10% of full scale/6 months
- Response speed: Within 10 seconds (90% response)
- Concentration output signal: 4 to 20mA DC or 0 to 100mV DC
- Alarm output: Relay contact (2x1c) Upper limit, lower limit
- Indicator: Moving coil type, JIS 2.5 class
- Gas sampling: Aspirating pump, filter built in
- Power supply: 100V, 115V, 200V, or 220V AC, 50/60Hz
- Sample gas temperature: 0 to 50 C
- Outer dimensions: 220(W) x 257(H) x 85(D) mm
- Mass (Weight): Approx. 3kg

Gas analyzer for heat treatment furnaces

Gas analyzer for heat treatment furnaces


Type: ZFG

0290

FEATURES

- ■Gas concentration in the furnace can be measured accurately.

 Repeatability: Within ±0.5% of full scale
- Due to use of single beam system for measurement, an excellent stability is ensured for a long period of time and maintenance is easy.

- ■CP calculation value can be displayed (option).
- ■The gas concentrations of 2 components of CO₂ + CO, CH₄ + CO, CO₂ + CH₄ can be measured simultaneously and continuously.

SPECIFICATIONS

- Measurable components: CO₂, CO, CH₄
- Measuring system: Single beam type infrared method
- Measurement range: CO₂: 0 to 0.5 ·····100%

CO: 0 to 0.5 ····· 100%

CH₄: 0 to 1 ·······10%

- Numbers of range: Max. 2 ranges
- Measurable components:Max. 2 components
- Repeatability: ±0.5% FS
- Drift:Within ±2.0% of full scale/week
- Response time:Less than 10 seconds (90% response from the device inlet)
- Output signal: 4 to 20mA DC or 0 to 100mV, 10mV DC
- Contact output: Instrument error, range identification signal
- Contact input:Remote range changeover, remote hold input
- Functions: CP calculation, output signal holding, Automatic OFF, etc
- Indication: LCD with back light
- Outer dimensions: 218(W) x 211(H) x 257(D) mm
- Power-supply voltage: 100 to 240V AC, 50/60Hz

Recorder (Option)

Paperless Recorder

SPECIFICATIONS

- Recording method: Built-in memory card
- Data format: ASCII (Data can be read directly into Excel), Binary (Data cannot be read directly into Excel)
- Storage capacity:
 512MB, max. (Stores 3years data).
- Input points: 3 or 6 points
- Display contents:
 Trend, bar graph, digital, historical trend, event summary, etc.

Type: PHF

- Alarm indication: Upper/lower limit alarm indication (alarm output is option)
- Input signal: Thermocouples, resistance bulbs, voltage/current
- Indication accuracy:
 ±(0.15%+1 digit) of input range
- Power supply: 100 to 240V AC
- Outer dimensions: 160(W) x 144(H) x 185(D) mm
- Others: Standard-supplied PC support software

Thermal Conductivity Gas Analyzer

FEATURES

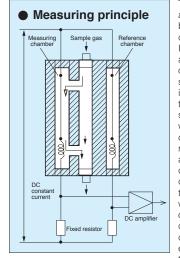
- ■Easy-to-see large LCD is helpful for efficient operation.
- ■Measured value output signals are linearizable (at option).
- ■Line voltage lies within 100 V to 240 VAC, 50/60 Hz.
- ■Zero point and span can be automatically calibrated (at option).
- ■Other gases interference is correctable (at option).
- ■Commuticable with other system through an RS-232C interface (MODBUS™)(at option).

SPECIFICATIONS

- Measuring principle: Meaturement of thermal conductivity
- Measurement component: He, Ar, H2, CH4, CO2
- Measurement range: Refer to Table 1
- Repeatability: ±1%FS
- Drift: Within ±2% of full scale/week
- Response time(90% response): High speed type within 10 sec
 - Standard type within 60 sec
- Output signal: 4 to 20mA DC or 0 to 1V DC, 0 to 10 mV DC
- Display unit: LCD with backlight
- Mounting: Flush mounting on panel
- Power supply: 100 to 240V AC, 50/60 Hz
- Optional specifications:

Linearization

Relay contact output


Contact input

Interference gas meatured value input

Automatic calibration function

Communicating function

This thermal conductivity gas analyzer measures gas concentration by utilizing the different thermal conductivities of 2 gas components. In the detector, there are reference and measuring chambers in each of which a thin platinum wire is stretched. The reference chamber is filled with reference gas and through the measuring chamber, sample gas is flowed. Each platinum wire composes a bridge circuit in combination with an external fixed resistor, and it is heated by flowing a constant current. When there is a change in the concentration of the component under measurement, the thermal conductivity of sample gas will change to affect the temperature of the platinum wire in the measuring chamber. The resulting thermal change is taken out as a change in electric resistance, according to which the concentration of measured gas is calculated

Thermal Conductivity Ratio of Gases

		•
Gases		Comparative thermal conductivity (0°C) when replacing thermal conductivity of air (2.41 x 10 ⁻² w/(m.k)) with 1
Sulfur dioxide gas	SO ₂	
Carbon dioxide gas	CO_2	
Argon	Ar	
Carbon monoxide	CO	
Steam (100°C)	H ₂ O	
Air		
Nitrogen	N_2	
Oxygen	O_2	
Methane	CH ₄	
Hydrogen	H_2	

Table 1: Measurable Component and Measureble Range

Measured gas	Reference gas component (Note 1)	Measurable range	Range ratio (Note 2)
H ₂	N ₂ , (CO ₂ , Ar, He)	0 to 3, 5, 10, 20, 50, 80, 100% 100 to 90, 100 to 80%	1 : 10
He	N2, (CO2, Ar) O2, Air	0 to 5, 10, 20, 30, 40, 50, 80, 100% 100 to 90, 100 to 80%	1 : 10
Ar	N2, O2, Air, (He)	0 to 10, 20, 50, 80, 100% 100 to 90, 100 to 80%	1:5
CH ₄	N ₂ , (CO ₂ , Ar, He)	0 to 20, 40, 50, 60, 80, 100% 100 to 80%	1:5
CO ₂	N2, O2, Air, (He)	0 to 10, 20, 50, 100% 100 to 90, 80%	1:5

(Note 1) The parenthesized gases require inquiry

(Note 2) Range ratio stands for maximum value.

Other gases' interference

Indication error of each measured value (vol%)

Interference component	He meter	CH ₄ meter	Ar meter	CO ₂ meter
H ₂ 1%	_	+5.8	-6.5	-8.0
CH4 1%	+0.17	_	-1.15	-1.38
SO ₂ 1%	-0.31	-1.8	+2.1	+2.5
Ar 1%	-0.15	-0.87	_	+1.2
CO ₂ 1%	-0.125	-0.725	+0.83	_
O2 1%	+0.019	+0.11	-0.125	-0.15
H ₂ O 1.5°C saturation	_	_	_	-0.56

AUTOMOBILE EXHAUST GAS ANALYZER

Type: ZKE

♦ SPECIFICATIONS

 Measuring components: HC, CO, CO2, O2

Measurement range:

HC: 0 to 10000ppm CO: 0 to 10%

CO2: 0 to 10% CO2: 0 to 20% O2: 0 to 25%

 Measuring method: Infrared ray system O2: Galvanic sensor

• Certification number: JATA-CO, HC-5

Communication interface: RS232C

• Indication: LCD with back light

Power supply: 90 to 264V AC

 Outer dimensions: 270(W) x 156(H) x 365(D) mm

Mass (Weight): Approx. 5kg

Basic Principle = NDIR *NDIR: Non Dispersive Infrared Ray structure <Double beam type>

Certain gas absorbs certain range of infrared ray

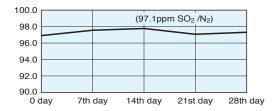
It makes internal pressure in the left detector higher than one in the right detector.

By blocking the ray, the pressure in both detectors is equalized.

The changing volume of absorbing infrared ray is detected.

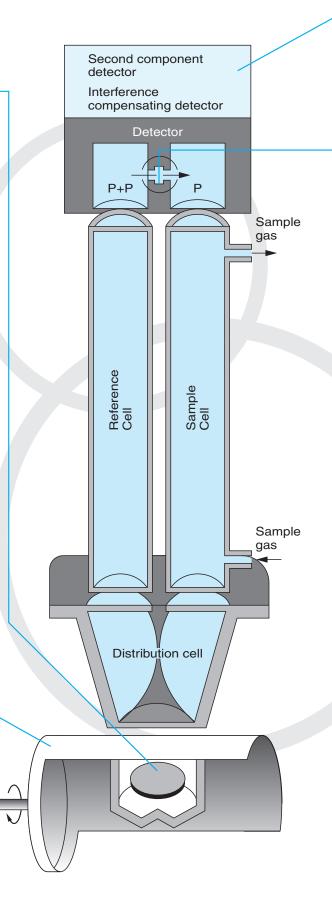
• Infrared single light source

There is less fluctuations of indication caused by the time lapsed of light source due to single source and dual beam method.


Single Light Source Provides

• Long Term Stability: ±0.5% to 2% FS/week

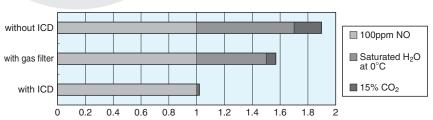
against dual light source.


- →Both sources cannot be exactly same
- →It creates error in measurement

Our test data of span drift for 28 days: Less than 1%FS

Drum type sector

Motor

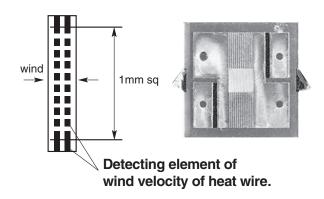

Interference Compensating Detector Eliminates

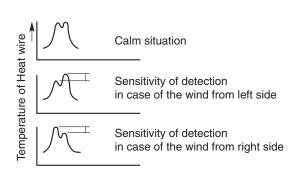
• Interference of Moisture

Cross sensitivity to moisture: Less than 2 ppm at 2 C of satulated H2O

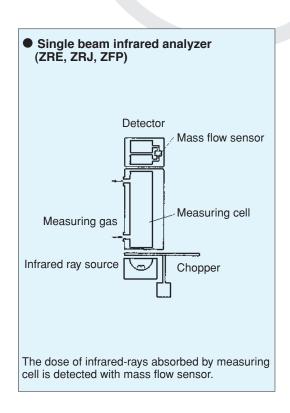
→Twin detector (Main detector + IC Detector) realizes excellent compensation.

Mass-flow sensor

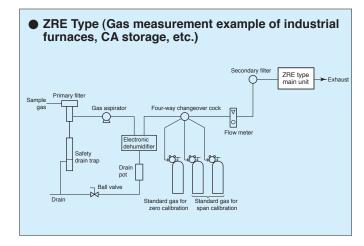

Basic Principle

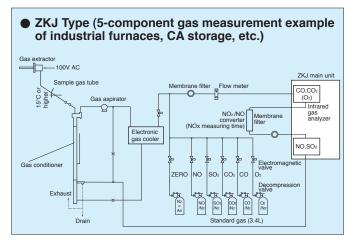

Resistance measurement (Detecting Temp. change by Pressure change)

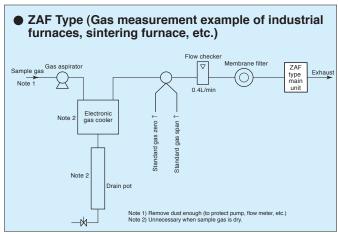
- No moving parts
- Great Noise proof due to low impedance sensor
- High sensitive sensor introduces good linearity
- Impure gas in detector which causes interference can be removed by making full vacuum condition.

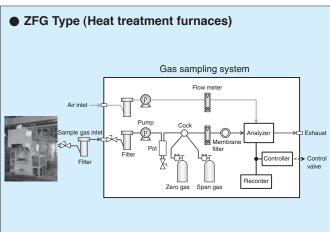

Mass Flow Sensor Offers

- 1) Excellent Linearity: ±1%FS
- 2) High Rangeability: 20 to 1 against condensor microphone (10 to 1)
- 3) Less Effect by Vibration No moving mechanical parts

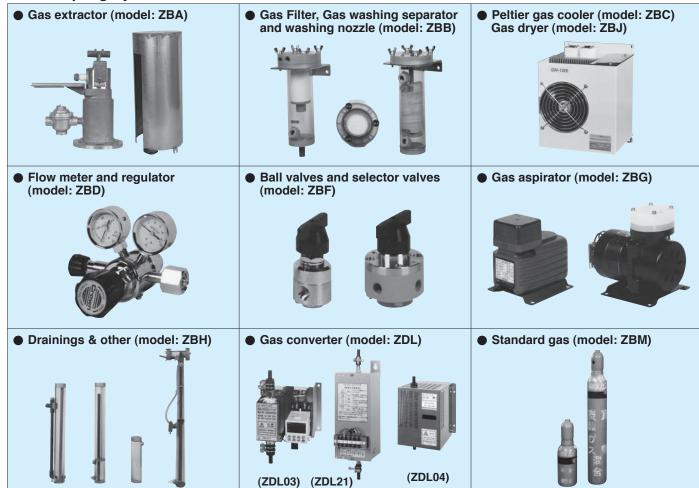



High sensitivity / High stability / High vibration proof. Super compact / Non-moving part

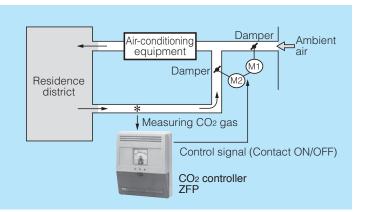


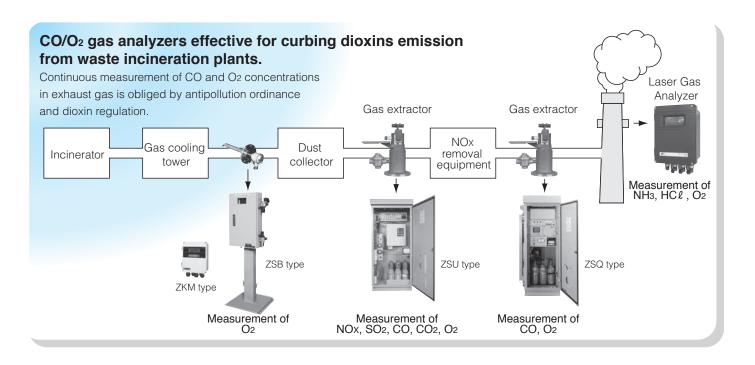

Gas Sampling System Diagram (Examples)

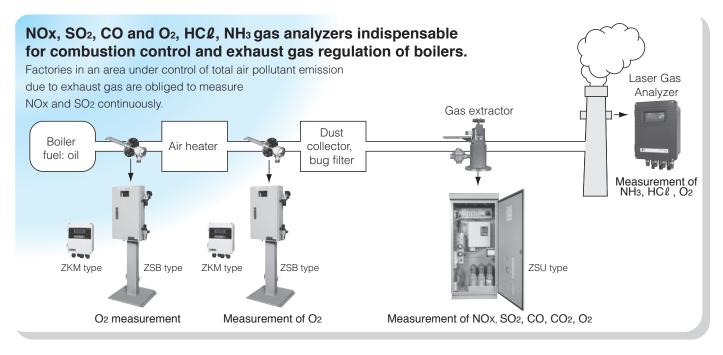
System components can be coordinated so as to match your application by utilizing rich experience.



Gas Sampling System Instrument


Applications of Analyzer


	Application	Measured gas	Model
	Incinerator	SO ₂ , NO _x , CO, CO ₂ , O ₂	ZSQ, ZSU
	Desulfurization and denitration of exhaust gas	SO2, NOx, O2, NH3	ZSU, ZSS
Air pollution	General combustion furnaces (including boilers)	SO2, NOx, O2, HCℓ	ZSU, ZSS
	Diesel generation	SO ₂ , NO _x , O ₂	ZSU, ZSV
	Automobile exhaust gas	CO, HC, CO ₂ , O ₂	ZKE
Biochemistry (microbes)	For fermentation	methanol, CO2	ZRJ, ZSV, ZRE
Biochemistry (microbes)	Incubator	CO2, O2	ZFP, ZKM, ZRJ, ZSV, ZRE
Ultra-low temperature	Superconduction device	He	ZAF
Storage and maturation of fruits		CO2, O2	ZFP, ZRJ, ZRE
Gas separation		O2, Ar, He, CO	ZAJ, ZAF, ZRJ, ZRE
	Blast furnace	CO, CO2, H2, O2	ZAF, ZAJ, ZRJ, ZRE, ZKM
	Converter funacer	CO, CO2, H2, O2	ZAF, ZAJ, ZRJ, ZRE, ZKM
Iron and steel	Heat treatment furnace	CO, CO ₂ , O ₂	ZKM, ZRJ, ZRE
	Sintering (pellet equipment)	CO, CO ₂ , O ₂	ZRJ, ZAJ, ZRE
	Coke oven (CDQ)	CO, CO2, H2, O2	ZAF, ZRJ, ZRE
Saving energy	Boiler, Heat treatment funacer	O2, CO2, CO	ZKM, ZSB, ZRE ZRJ, ZSQ, ZSU, ZSV
	Detection of explosive gas (hydrocarbon gas and others)	HC	ZRJ
Hazard prevention	Analysis of gases produced through combustion of new building materials	CO, CO ₂ , HC, O ₂	ZRJ, ZRE
	Marine inert gas analysis	CO2, O2	ZRJ, ZRE, ZKM
Ceramic industry	Tunnel kiln	CO, O2	ZRJ, ZAJ, ZRE, ZSV
Ceramic industry	Cement	CO, CO ₂ , O ₂	ZRJ, ZAJ, ZRE, ZKG
Water and Sewerage water	Sewerage incinerator	SO ₂ , NO _x , CO, O ₂	ZSU
	Generating furnace	CO ₂	ZRJ, ZRE, ZSV
Thermal treatment	Carburization furnace	CO2,CO, O2	ZRJ, ZRE, ZSV
Theimai treatment	Annealing furnace	CO2,CO, O2	ZRJ, ZRE, ZSV
	Nitration furnace	NНз	ZSS
Agriculture	Green house	CO ₂	ZFP, ZSV
Agriculture	Reserch of photo synthesis	CO ₂	ZFP, ZRJ, ZRE, ZSV
	Oil refining plant	CO, CO ₂ , CH ₄	ZRJ, ZRE
Chemistry	Petrochemical plant	CO, CO ₂ , CH ₄	ZRJ, ZRE
	Gas production plant	CO, H ₂ , He, Ar, O ₂ , CO ₂	ZAF, ZRJ, ZRE
Electronics	Solder furnace	O2	ZKM
	Concentration in tunnel	CO	ZSA
Environmental safeguard	Parking area	CO, CO ₂	ZSA, ZFP
	Building management Building ventilation system	CO ₂	ZFP
Various scientific experiments	Laboratory	Various gases	ZFP, ZAJ, ZRJ, ZSV, ZRE
Fuel cell	Gas generation for fuel cell	H2, CH4, CO, CO2	ZRJ, ZAF, ZRE
Bio mass energy		CO, CO2, CH4, H2, O2	ZRJ, ZAF, ZSV, ZRE


Examples of Application

Most recommended for energy saving in airconditioning of buildings is a CO₂ controller!

The CO₂ gas concentration in a room is required to be within 1,000 ppm by law in Japan. To meet this, the fresh outdoor air is always taken in. Control of the air intake at an appropriate level will save energy to run the air-conditioner for cooling and heating.

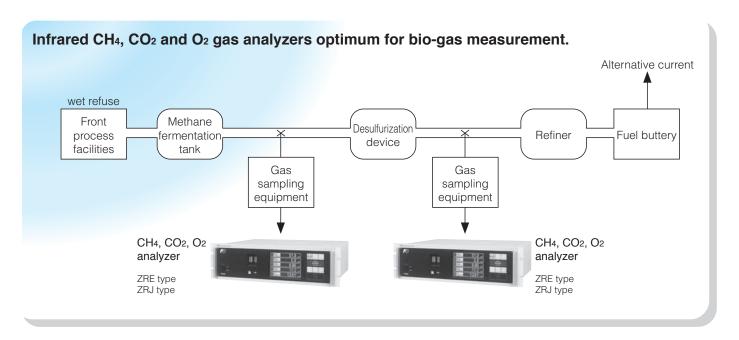
Infrared CO₂ gas analyzers essential for measuring CO₂ and O₂ of heat treatment and reforming furnaces. Propane and butane gases are brought into contact with a hot In iron treatment in a carburizing furnace, the CO₂ concentration catalyzer to generate the gases to be supplied into a carburizing of the in-furnace atmosphere is an index of furnace work. furnace. These gas analyzers measure each concentration of CO2 and O2 gases to be supplied into a carburizing furnace. Enrich gas-Heat → Source gas Gas supplied from reforming furnace-Reforming treatment **←**Air ×furnace furnace Carbonizing furnace Gas Gas sampling sampling equipment equipment CO2, CO, CH4, O2 Portable analyzer

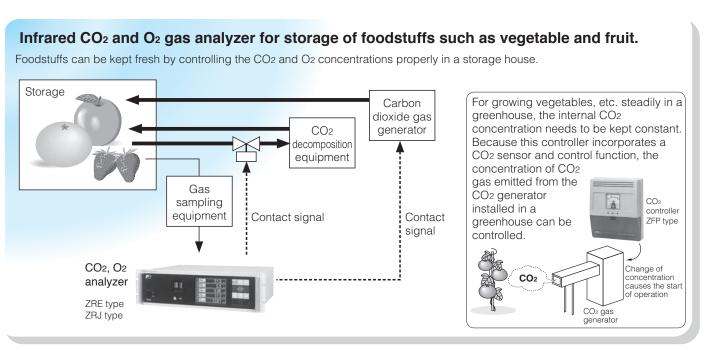
ZRE type

ZKJ type

ZRJ type

Portable


CO, CO₂ meter


ZSVS type

CO, CO₂

analyzer

ZFG type

CO, CO₂ meter

ZSVS type

Fuji Electric Co., Ltd.

International Sales Div.
Sales Group
Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome,
Shinagawa-ku, Tokyo 141-0032, Japan
http://www.fujielectric.com
Phone: 81-3-5435-7280, 7281 Fax: 81-3-5435-7425
http://www.fujielectric.com/products/instruments/